F(x)=(根号3/2)sin2x-cos^2x-1/2.

1个回答

  • 1、由公式cos2x=2(cosx)^2 -1

    即(cosx)^2=0.5cos2x +0.5可知,

    f(x)=√3/2 sin2x -0.5cos2x -1

    =sin(2x-π/6) -1

    x属于[-π/12,5π/12],所以2x-π/6属于[-π/3,2π/3]

    显然当2x-π/6=π/2,即x=π/3时,f(x)取最大值,f(π/3)=sin(π/2)-1=0

    当2x-π/6= -π/3,即x= -π/12时,f(x)取最小值,f(-π/12)=sin(-π/3)-1= -0.5√3 -1

    2、f(C)=0,即sin(2C-π/6)=1,

    所以2C-π/6=π/2,解得C=π/3,

    而向量m=(1,sinA)与向量n=(2,sinB)共线,

    即sinB/sinA=2,

    A+B+C=π,C=π/3

    所以B=2π/3 -A

    故sin(2π/3 -A) /sinA=2,

    而sin(2π/3 -A)=sin(2π/3)cosA -cos(2π/3)sinA=0.5√3cosA +0.5sinA

    于是(0.5√3cosA +0.5sinA) /sinA

    = 0.5√3cotA+0.5=2

    解得cotA=√3,即A=π/6,

    故B=2π/3 -A=π/2,

    所以a=c×tanA=√3×tan(π/6)=1,

    b=a/ sinA=1/sin(π/6)=2