f(x)=cosx/4(根号3sinx/4+cosx/4)

1个回答

  • (1)

    f(x)=cosx/4(根号3sinx/4+cosx/4)

    =√3sinx/4cosx/4+cos²x/4

    =√3/2*sinx/2+1/2(1+cosx/2)

    =√3/2sinx/2+1/2cosx/2+1/2

    =sin(x/2+π/6)+1/2

    ∵f(x)=1

    ∴sin(x/2+π/6)+1/2=1

    ∴sin(x/2+π/6)=1/2

    x+π/3=2(x/2+π/6)

    根据二倍角公式

    ∴cos(x+π/3)=1-2sin²(x/2+π/6)=1/2

    ∴cos(2π/3-x)

    =cos[π-(π/3+x)]

    =-cos(π/3+x)

    =-1/2

    (2)

    acosC+1/2c=b

    根据正弦定理

    sinAcosC+1/2sinC=sinB

    ∵sinB=sin(A+C)=sinAcosC+cosAsinC

    ∴sinAcosC+1/2sinC=sinAcosC+cosAsinC

    ∴cosAsinC=1/2sinC

    ∵sinC>0

    ∴cosA=1/2

    ∵A为三角形内角

    ∴A=π/3

    ∴B+C=π-A=2π/3

    ∴0