(1)
f(x)=cosx/4(根号3sinx/4+cosx/4)
=√3sinx/4cosx/4+cos²x/4
=√3/2*sinx/2+1/2(1+cosx/2)
=√3/2sinx/2+1/2cosx/2+1/2
=sin(x/2+π/6)+1/2
∵f(x)=1
∴sin(x/2+π/6)+1/2=1
∴sin(x/2+π/6)=1/2
x+π/3=2(x/2+π/6)
根据二倍角公式
∴cos(x+π/3)=1-2sin²(x/2+π/6)=1/2
∴cos(2π/3-x)
=cos[π-(π/3+x)]
=-cos(π/3+x)
=-1/2
(2)
acosC+1/2c=b
根据正弦定理
sinAcosC+1/2sinC=sinB
∵sinB=sin(A+C)=sinAcosC+cosAsinC
∴sinAcosC+1/2sinC=sinAcosC+cosAsinC
∴cosAsinC=1/2sinC
∵sinC>0
∴cosA=1/2
∵A为三角形内角
∴A=π/3
∴B+C=π-A=2π/3
∴0