由题意,a2/a1=3/1,a4/a2=7/3,不妨设a1=b,那么a2=3b,所以数列的公差为2b,那么数列的通项公式为an=(2n-1)b,也就易求得sn=n*n*b,那么s2n=(2n)*(2n)*b,所以S2n/Sn=4
等差数列{an}的前几项的和为Sn,且a2n/an=(4n-1)/(2n-1),则S2n/Sn
1个回答
相关问题
-
等差数列{an}a1=1前n项和为Sn且S2n/Sn=4n+2/n+1 (1)求an通项公试
-
已知等差数列{an}的前n项和为Sn,且(2n-1)Sn+1 -(2n+1)Sn=4n²-1(n∈N*)
-
设等差数列an的前n项和为Sn,且S4=4S2,a2n=2an+1
-
设等差数列An的前n项和为Sn,且S4=4S2,A2n=2An+1
-
等差数列{an}前n项和为sn,求证S2n-1=(2n-1)an
-
等差数列an中,a1=1前n项和Sn,满足条件S2n/Sn=4n+2/n+1,求an通项
-
1.等差数列an前n项和为Sn,求证S(2n-1)=(2n-1)an
-
已知数列{an}的首项a1=1,前n项和为Sn,且3Sn-4,an,2-(3S(n-1))/2(n≥2)成等差数列
-
已知数列{an}的前n项和为Sn,a1=1,Sn=4an+Sn-1-an-1(n≥2,且n∈N*)
-
设Sn为数列{an}的前n项和,Sn=(-1)^n an - 1/(2^n),n∈N*,则 (1)a3=___ (2)S