1、∵AB=AC=2 ∠BAC=90°
∴BC²=AB²+AC²=2²+2²
BC=2√2
2、连接AD
∵D为BC边上中点,△ABC是等腰直角三角形
∴AD=1/2BC=BD
∠CAD=∠ABC=45°即∠FAD=∠EBD=45°
∵PE⊥AB,PF⊥AC
∴∠PEA=∠AFP=∠BAC=∠EAF=90°
∴四边形AEPF是矩形
∴AF=PE
∵PE⊥AB,即∠PEB=90°
∠B=45°
∴在等腰直角三角形BPE中:PE=BE=AF
在△BDE和△ADF中
AF=BE,AD=BD,∠FAD=∠EBD
∴△BDE≌△ADF(SAS)
∴DE=DF
∠ADF=∠BDE
∵∠BDE+∠ADE=∠ADB=90°
∴∠ADF+∠ADE=90°
即∠EDF=90°
∴DE⊥DF
3、∵△BDE≌△ADF
∴S△BDE=S△ADF
∵S四边形AEDF=S△ADE+S△ADF
∴S四边形AEDF=S△ADE+S△BDE
=S△ADB=1/2S△ABC
=1/2×1/2AB×AC
=1/4×2×2
=1