设A(x1,y1),B(x2,y2)中点(2,1)
x1+x2=4,y1+y2=2
在x^2-y^2/2=1上
x1^2-y1^2/2=1
x2^2-y2^2/2=1
相减得
x1^2-x2^2=y1^2/2-y2^2/2
k=(y1-y2)/(x1-x2)=2(x1+x2)/(y1+y2)=4
直线方程:y-1=4(x-2)
即4x-y-7=0
设A(x1,y1),B(x2,y2)中点(2,1)
x1+x2=4,y1+y2=2
在x^2-y^2/2=1上
x1^2-y1^2/2=1
x2^2-y2^2/2=1
相减得
x1^2-x2^2=y1^2/2-y2^2/2
k=(y1-y2)/(x1-x2)=2(x1+x2)/(y1+y2)=4
直线方程:y-1=4(x-2)
即4x-y-7=0