(1)成立,证明如下
由AB∥EF∥CD得,
=
,
=
两式相加,得
+
=
+
=
=
=1
∴EF·CD+EF·AB=AB·CD,两边同除以AB·CD·EF得
+
=
(2)
+
=
证明如下:作AG⊥BD于G,EH⊥BD于H,CK⊥BD交BD延长线于k,由平行线性质得:
=
=
,
=
=
所以
+
=1,∴
+
=
∴
+
=
略
(1)成立,证明如下
由AB∥EF∥CD得,
=
,
=
两式相加,得
+
=
+
=
=
=1
∴EF·CD+EF·AB=AB·CD,两边同除以AB·CD·EF得
+
=
(2)
+
=
证明如下:作AG⊥BD于G,EH⊥BD于H,CK⊥BD交BD延长线于k,由平行线性质得:
=
=
,
=
=
所以
+
=1,∴
+
=
∴
+
=
略