n=1时,f(2)=1+1/2>1
假设当n=k时成立,下证当n=k+1时也成立
f(2^(k+1))=f(2^k)+1/(2^k+1)+1/(2^k+2)+...+1/(2^(k+1))
>k/2+1/(2^k+1)+1/(2^k+2)+...+1/(2^k+2^k)) 注:(2^k+2^k)=2*2^k=2^(k+1)
从第二项起每项都用最后一项代替
>k/2+1/2^(k+1)+1/2^(k+1)+...+1/2^(k+1)
=k/2+2^k/2^(k+1)
=k/2+1/2
=(k+1)/2
不等式成立