f(x) = 6x^2/(x^2-4x)
定义域:x不等于0,x不等于4.
lim(x->无穷)f(x) = lim(x->无穷)6x^2/(x^2-4x) = lim(x->无穷)6/(1-4/x) = 6/1 = 6,
水平渐近线:y = 6.
lim(x->0)f(x) = lim(x->0)6x^2/(x^2-4x) = lim(x->+0)6x/(x-4) = 0/(-4) = 0,
lim(x->4+)f(x) = lim(x->4+)6x^2/(x^2-4x) = lim(x->4+)6x/(x-4)=+无穷
lim(x->4-)f(x) = lim(x->4-)6x^2/(x^2-4x) = lim(x->4-)6x/(x-4)=-无穷,
垂直渐近线:x = 4.