(a-b)^2+(b-c)^2+(a-c)^2
=a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2
=2(a^2+b^2+c^2-ab-bc-ca)
将a-b=√3+√2,b-c=√3-√2,a-c=(a-b)+(b-c)=2√3带入上式计算
得(a-b)^2+(b-c)^2+(a-c)^2=22
所以a^2+b^2+c^2-ab-bc-ca=11
(a-b)^2+(b-c)^2+(a-c)^2
=a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2
=2(a^2+b^2+c^2-ab-bc-ca)
将a-b=√3+√2,b-c=√3-√2,a-c=(a-b)+(b-c)=2√3带入上式计算
得(a-b)^2+(b-c)^2+(a-c)^2=22
所以a^2+b^2+c^2-ab-bc-ca=11