∫1/(3-cosx) dx
=∫1/[2+2(sin0.5x)^2]dx
=∫1/[1+(sin0.5x)^2]d(0.5x)
=∫(csc0.5x)^2/[(csc0.5x)^2+1]d(0.5x)
=-∫1/[(cot0.5x)^2+2]d(cot0.5x)
=-(1/√2)arctan(cot0.5x/√2)+C
∫1/(3-cosx) dx
=∫1/[2+2(sin0.5x)^2]dx
=∫1/[1+(sin0.5x)^2]d(0.5x)
=∫(csc0.5x)^2/[(csc0.5x)^2+1]d(0.5x)
=-∫1/[(cot0.5x)^2+2]d(cot0.5x)
=-(1/√2)arctan(cot0.5x/√2)+C