sin(B+π/4)-sin(B-π/4)=√2/2
sinBcos(π/4)+cosBsin(π/4)-(sinBcos(π/4)-cosBsin(π/4))=√2/2
2cosBsin(π/4)=√2/2
√2cosB=√2/2
cosB=1/2
B=60°
sin(B+π/4)-sin(B-π/4)=√2/2
sinBcos(π/4)+cosBsin(π/4)-(sinBcos(π/4)-cosBsin(π/4))=√2/2
2cosBsin(π/4)=√2/2
√2cosB=√2/2
cosB=1/2
B=60°