答:
记Sn=1*2^1+2*2^2+3*2^3+...+n*2^n
则:2Sn=1*2^2+2*2^3+...+(n-1)*2^n+n*2^(n+1)
2Sn-Sn=Sn
=n*2^(n+1)-1*2^1+(1-2)*2^2+(2-3)*2^3+...+(n-1-n)*2^n
=n*2^(n+1)-2^1-2^2-2^3-...-2^n(后面这个是等比数列)
=n*2^(n+1)-2(2^n-1)
=(n-1)*2^(n+1)+2
答:
记Sn=1*2^1+2*2^2+3*2^3+...+n*2^n
则:2Sn=1*2^2+2*2^3+...+(n-1)*2^n+n*2^(n+1)
2Sn-Sn=Sn
=n*2^(n+1)-1*2^1+(1-2)*2^2+(2-3)*2^3+...+(n-1-n)*2^n
=n*2^(n+1)-2^1-2^2-2^3-...-2^n(后面这个是等比数列)
=n*2^(n+1)-2(2^n-1)
=(n-1)*2^(n+1)+2