用角平分线性质可得两组角相等,再结合平行线的性质,可证出∠DBF=∠DFB,∠ECF=∠EFC,那么利用等角对等边可得线段的相等,再利用等量代换可证.
证明:∵BF、CF是∠ABC、∠ACB的角平分线,
∴∠DBF=∠FBC,∠ECF=∠BCF.
又∵DE∥BC,
∴∠BFD=∠CBF,∠BCF=∠EFC.
∴∠DBF=∠DFB,∠ECF=∠EFC.
∴BD=DF,CE=EF.
∴DE=DF+EF=BD+CE.
点评:本题考查了角平分线性质、平行线性质、以及等角对等边的性质等.进行线段的等量代换是正确解答本题的关键.