解题思路:根据两函数的图象关于y=x对称可知,两函数互为反函数,所以求出已知函数的反函数即可得到f(x)的解析式;再求出f(x)的导函数,把x等于e代入导函数求出值即为切线方程的斜率,然后把x等于e代入f(x)中求出切点的纵坐标,根据切点坐标和斜率写出切线方程即可.
根据题意,函数y=f(x)的图象与y=ex的图象关于直线y=x对称,
由y=ex,
解得x=lny,
所以f(x)=lnx;
f′(x)=[1/x],所以切线的斜率k=f′(e)=[1/e],
把x=e代入f(x)中得:f(e)=lne=1,所以切点坐标为(e,1)
则所求的切线方程为:y-1=[1/e](x-e),化简得:x-ey=0.
故答案为:x-ey=0.
点评:
本题考点: 利用导数研究曲线上某点切线方程.
考点点评: 此题考查学生会利用导数求曲线上过某点切线方程的斜率,掌握两函数互为反函数的条件,会根据一点和斜率写出直线的方程,是一道综合题.