解析:
1、当n≥2时
an×a(n-1)=a(n-1)-an
1/an-1/a(n-1)=1
1/an=1/a(n-1)+1
∴数列{1/an}是以1/a1=3为首项,d=1为公差的等差数列
1/an=3+(n-1)=n+2
an=1/(n+2)
bn=1/an=n+2
2、令数列{an/n}为:Cn
则:Cn=1/n(n+2)=1/2[1/n-1/(n+2)]
C1=1/2(1-1/3)
C2=1/2(1/2-1/4)
C3=1/2(1/3-1/5)
C4=1/2(1/4-1/6)
.
Cn=1/2[1/n-1/(n+2)]
Tn=1/2[1/-1/3+1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+1/6-1/8+1/7-1/9+.+1/n-1/(n+2)]
=1/2[1+1/2-1/(n+1)-1/(n+2)]
=3/4-(2n+3)/2(n+1)(n+2)