设函数f(x)+ax2+bx+k(k>0),在x=0处取到极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线

1个回答

  • 1.

    f(x)=ax^2+bx+k

    f'(x)=2ax+b

    f'(0)=b=0

    f(x)=ax^2+k

    f(1)=a+k

    过(1,a+k)的切线斜率k1=f'(1)=2a+b=2a

    x+2y+1=0的斜率k2=-1/2

    所以k1*k2=(-1/2)(2a)=-a=1

    a=-1

    所以a=-1,b=0;

    2.

    g(x)=e^x/f(x)

    =e^x/(-x^2+k)

    g'(x)=[(-x^2+k)e^x-(-2x)e^x]/(-x^2+k)^2

    =(-x^2+2x+k)e^x/(-x^2+k)^2

    因e^x/(-x^2+k)^2>0

    所以g'(x)的正负与-x^2+2x+k相同,

    -x^2+2x+k=-(x-1)^2+k+1

    -(x-1)^2+k+1>0时,即1-√(k+1)<x<1+√(k+1)时,g'(x)>0,g(x)单调递增;

    -(x-1)^2+k+1<0时,即x>1+√(k+1)或x<1-√(k+1)时,g'(x)<0,g(x)单调递减.