不妨设p>q,抛物线准线方程L:x=-1/4a,做PE⊥L于E,QH⊥L于H,L交轴于F',直线PQ交L于G,FF'=1/2a,则
PE=PF=p
QH=QF=q
GP/PE=GQ/QH,即
GP/p=(GP+p+q)/q
GP=p(p+q)/(q-p)
GP/PE=GF/FF',即
[p(p+q)/(q-p)]/p=(p(p+q)/(q-p)]+p)/(1/2a)
(p+q)/(q-p)=2a(p^2+pq+pq-p^2)/(q-p)
(p+q)/pq=4a
1/p+1/q=4a
不妨设p>q,抛物线准线方程L:x=-1/4a,做PE⊥L于E,QH⊥L于H,L交轴于F',直线PQ交L于G,FF'=1/2a,则
PE=PF=p
QH=QF=q
GP/PE=GQ/QH,即
GP/p=(GP+p+q)/q
GP=p(p+q)/(q-p)
GP/PE=GF/FF',即
[p(p+q)/(q-p)]/p=(p(p+q)/(q-p)]+p)/(1/2a)
(p+q)/(q-p)=2a(p^2+pq+pq-p^2)/(q-p)
(p+q)/pq=4a
1/p+1/q=4a