根据二次方程根与系数的关系得 lga+lgb = 2 ,lga*lgb = 1/2 ,
那么可得 lg(ab) = lga+lgb = 2 ;
由于 [lg(a/b)]^2=(lga-lgb)^2 = (lga)^2+(lgb)^2-2lga*lgb = (lga+lgb)^2-4lga*lgb = 4-2 = 2 ,
所以,原式 = 2*2 = 4 .
根据二次方程根与系数的关系得 lga+lgb = 2 ,lga*lgb = 1/2 ,
那么可得 lg(ab) = lga+lgb = 2 ;
由于 [lg(a/b)]^2=(lga-lgb)^2 = (lga)^2+(lgb)^2-2lga*lgb = (lga+lgb)^2-4lga*lgb = 4-2 = 2 ,
所以,原式 = 2*2 = 4 .