分部积分法求不定积分用分部积分法求,∫e^xsinxdx ∫e^-xcosxd×

1个回答

  • ∫e^xsinxdx

    =∫sinxd(e^x)

    =e^xsinx-∫e^xd(sinx)

    =e^xsinx-∫e^xcosxdx

    =e^xsinx-∫cosxd(e^x)

    =e^xsinx-e^xcosx+∫e^xd(cosx)

    =e^xsinx-e^xcosx-∫e^xsinxdx

    ∴2∫e^xsinxdx=e^xsinx-e^xcosx

    ∫e^xsinxdx=e^x(sinx-cosx)/2

    令t=-x

    ∫e^-xcosxdx

    =∫e^tcos(-t)d(-t)

    =-∫e^tcostdt

    =-∫costd(e^t)

    =-[e^tcost-∫e^td(cost)]

    =-(e^tcost+∫e^tsintdt)

    =-[e^tcost+∫sintd(e^t)]

    =-[e^tcost+e^tsint-∫e^td(sint)]

    =-(e^tcost+e^tsint-∫e^tcostdt)

    ∴2∫e^tcostdt=e^tcost+e^tsint

    ∫e^tcostdt=e^t(cost+sint)/2

    ∫e^-xcosxdx==-∫e^tcostdt=-e^t(cost+sint)/2=e^(-x)(sinx-cosx)/2