∫e^xsinxdx
=∫sinxd(e^x)
=e^xsinx-∫e^xd(sinx)
=e^xsinx-∫e^xcosxdx
=e^xsinx-∫cosxd(e^x)
=e^xsinx-e^xcosx+∫e^xd(cosx)
=e^xsinx-e^xcosx-∫e^xsinxdx
∴2∫e^xsinxdx=e^xsinx-e^xcosx
∫e^xsinxdx=e^x(sinx-cosx)/2
令t=-x
∫e^-xcosxdx
=∫e^tcos(-t)d(-t)
=-∫e^tcostdt
=-∫costd(e^t)
=-[e^tcost-∫e^td(cost)]
=-(e^tcost+∫e^tsintdt)
=-[e^tcost+∫sintd(e^t)]
=-[e^tcost+e^tsint-∫e^td(sint)]
=-(e^tcost+e^tsint-∫e^tcostdt)
∴2∫e^tcostdt=e^tcost+e^tsint
∫e^tcostdt=e^t(cost+sint)/2
即
∫e^-xcosxdx==-∫e^tcostdt=-e^t(cost+sint)/2=e^(-x)(sinx-cosx)/2