1.设存入X元
X*1.98%*0.2=3.96
X=1000
即存了1000元
2.规律:a×(a+1)×(a+2)×(a+3)+1=[a×(a+3)+1]^2
即四个连续递增的正整数的积加1等于第一个数乘以第四个数加上1的和的平方
证:
[a×(a+3)+1]^=(a^2+3a+1)^2=a^4+(3a+1)^2+2a^2*(3a+1)=
a^4+6a^3+11a^2+6a+1
a×(a+1)×(a+2)×(a+3)+1=(a^2+a)×(a^2+5a+6)+1=a^4+5a^3+6a^2+a^3+5a^2+6a+1=
a^4+6a^3+11a^2+6a+1
或者这样证:
(为方便输入,以N代替A)
n(n+1)(n+2)(n+3)+1=(n^2+3n+1)^2
n(n+1)(n+2)(n+3)+1
=[n(n+3)][(n+1)(n+2)]+1
=(n^2+3n)(n^2+3n+2)+1
=(n^2+3n)^2+2(n^2+3n)+1
=(n^2+3n+1)^2