a,b,c成等比数列,ac=b^2,sinA*sinC=sinB^2 (a/sinA=b/sinB=c/sinC=2R)
cotA+cotC= cosA /sinA +cosC /sinC
=(cosA sinC +cosC sinA )/sinA sinC
=sin(A+C )/sinB ^2
=sinB /sin B^2
=1/sinB (由sinB^2 +cosB^2=1 )
=根号(1-cosB^2)=根号7/4
2,由题意 a*c=b^2=2/3 cosB=(a^2+c^2-b^2)/(2ac)
=((a+c)^2-2ac-b^2)/(2ac)
=((a+c)^2-2)/(2*2/3)=3/4
得出(a+c)^2=3,所以a+c=根号3