1
sinA=√(1-cos²A)=2√5/5
sinB=√(1-cos²A)=3√10/10
∴cosC=-cos(A+B)=-(cosAcosB-sinAsinB)=sinAsinB-cosAcosB=√2/2
C=45°
2
由正弦定理
AB/sinC=BC/sinA
∴BC=ABsinA/sinC=4√5/5
∴面积S=AB*BCsinB/2=6/5
1
sinA=√(1-cos²A)=2√5/5
sinB=√(1-cos²A)=3√10/10
∴cosC=-cos(A+B)=-(cosAcosB-sinAsinB)=sinAsinB-cosAcosB=√2/2
C=45°
2
由正弦定理
AB/sinC=BC/sinA
∴BC=ABsinA/sinC=4√5/5
∴面积S=AB*BCsinB/2=6/5