终于看明白 了,稍等啊
设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵
1个回答
相关问题
-
A为n阶实矩阵,A≠0,|A|=0,则矩阵B=ATA是() A 正定矩阵 B 半正定矩阵 C 负定矩阵 D 不定
-
设A ,B均为正定矩阵,则__ a.AB是正定矩阵,b.A+B是正定矩阵 c.A-B是正定矩阵 d.|A|=|B|
-
A,B为n阶正定矩阵,则A*B*是否是正定矩阵?为什么?
-
已知:A为n阶实正定对称矩阵,B为n阶反实对称矩阵 证:det(A+B)> 0
-
设A是n阶实矩阵,E是n阶单位矩阵,证则B=E+A^TA为正定矩阵
-
B为实对称可逆矩阵,则B'B正定?
-
n阶实对称矩阵A为正定矩阵的充分必要条件
-
如果A是n阶正定矩阵,B是n阶实反对称矩阵,证明 A-BTB是 正定矩阵.
-
设A是n阶正定矩阵,B是n阶反堆成矩阵,证明A-B^2(注:A减B方)为正定矩阵.
-
设A为n阶实对称矩阵,证明:秩(A)=n的充分必要条件为存在一个n阶实矩阵B,使AB+BTA是正定矩阵.