方法一: f(x) = cos [π / 2 - (x + π / 3)] cos [π / 2 - (x + π / 2)] = cos (π / 6 - x) cos (-x) = (√3 / 2 cos x + 1 / 2 sin x) cos x =√3 / 2 (cos x)^2 + 1 / 2 sin x cos x =√3 / 4 2 (cos x)^2 + 1 / 4 2 sin x cos x =√3 / 4 [1 + cos (2 x)] + 1 / 4 sin (2 x) =√3 / 4 + 1 / 2 [√3 / 2 cos (2 x) + 1 / 2 sin (2 x) =√3 / 4 + 1 / 2 sin (2 x + π / 3) 2π / 2 = π , 所以,f(x)的最小正周期是 π. 方法二: f(x) = sin (x + π / 3) cos [π / 2 - (x + π / 2)] = sin (x + π / 3) cos (-x) = sin (x + π / 3) cos x = sin [(x + π / 6) + π / 6] cos [(x + π / 6) - π / 6] = [√3 / 2 sin (x + π / 6) + 1 / 2 cos (x + π / 6)] [√3 / 2 cos (x + π / 6) + 1 / 2 sin (x + π / 6)] = 3 / 4 sin (x + π / 6) cos (x + π / 6) +√3 / 4 [cos (x + π / 6)]^2 + √3 / 4 [sin (x + π / 6)]^2 + 1 / 4 cos (x + π / 6) sin (x + π / 6) = (3 / 4 + 1 / 4 ) sin (x + π / 6) cos (x + π / 6) + √3 / 4 {[cos (x + π / 6)]^2 + [sin (x + π / 6)]^2} = 1 / 2 2 sin (x + π / 6) cos (x + π / 6) + √3 / 4 = 1 / 2 sin (2 x + π / 3) + √3 / 4 所以,f(x)的最小正周期是 π.
sin(x+π/3)*sin(x+π/2)的最小正周期,
1个回答
相关问题
-
函数y=sin(x+π/3)sin(x+π/2)的最小正周期T=?
-
函数y=sin(x+π/3)sin(x+π/2)的最小正周期T=?
-
函数f(x)=sin(x+π3)sin(x+π2)的最小正周期是T=______
-
函数y=2sin( πx - 3π ) 最小正周期?
-
y=sin(π+2x)cos(π-2x)的最小正周期
-
y=sin^2(x+π/2)-sin^2(x-π/4)的最小正周期和值域
-
求函数y=2sinx*cos(3π/2+x)+√3cosx*sin(π+x)+sin(π/2+x)*cosx的最小正周期
-
函数y=sin(πx+π/3)的最小正周期是
-
函数y=sin(x+π\5x)-sin(x-π\5)的最小正周期是?
-
f(x)=sin(x+π/6)+sin(x-π/6)+2cos^2(x/2)+a,求最小正周期,[-π/2,π/2]上最