解析:f(X)=2(√3sinxcosx+cos^2x)+2m-1=√3sin2x+2cos^2x-1+2m=√3sin2x+cos2x+2m
=2(sin2x*√3/2+cos2x*1/2)+2m=2sin(2x+π/6)+2m,
∴T=2π/2=π,
当x∈[0,π/2]时,π/6≤2x+π/6≤7π/6,
-1/2≤sin(2x+π/6)≤1,
∴f(x)min=2*(-1/2)+2m=2m-1=5,
m=3
解析:f(X)=2(√3sinxcosx+cos^2x)+2m-1=√3sin2x+2cos^2x-1+2m=√3sin2x+cos2x+2m
=2(sin2x*√3/2+cos2x*1/2)+2m=2sin(2x+π/6)+2m,
∴T=2π/2=π,
当x∈[0,π/2]时,π/6≤2x+π/6≤7π/6,
-1/2≤sin(2x+π/6)≤1,
∴f(x)min=2*(-1/2)+2m=2m-1=5,
m=3