(1)
a=(Sn,1),b=(-1,2an+2^(n+1))
a.b=0
-Sn+2an + 2^(n+1) =0
Sn =2an + 2^(n+1)
n=1
a1= -4
an = Sn -S(n-1)
= 2an - 2a(n-1) + 2^n
an = 2a(n-1) -2^n
an/2^n-a(n-1)/2^(n-1) = -1
an/2^n-a1/1=-(n-1)
an/2^n = -(n+3)
bn=an/2^n = -(n+3)
an = -(n+3).2^n
(2)
Sn =2an + 2^(n+1)
=-2(n+3).2^n +2^(n+1)
=-2(n+2).2^n