:(根号x+根号y)分之(x+y) +【根号xy乘以(根号x+根号y)】 分之2xy
=(x+y) / (√x +√y) + 2√xy / (√x +√y)
=(x+y +2√xy )/(√x +√y)
=(√x +√y) ^2/(√x +√y)
=√x +√y
根号(xy) -根号(x/y)+根号(y/x)+根号(x/y+y/x+2)
= √xy - √x/y + √y/x +√ (x/y+y/x+2)
= √xy - √x/y + √y/x + √(√x/y + √y/x)^2
= √xy - √x/y + √y/x + √x/y + √y/x
= √xy + 2√y/x