解 原方程可化为2(lg x) 2-4lg x+1=0. 设t=lg x,则方程化为2t 2-4t+1=0,∴t 1+t 2=2,t 1•t 2=
1
2 .
又∵a、b是方程2(lg x) 2-lg x 4+1=0的两个实根,∴t 1=lg a,t 2=lg b,即lg a+lg b=2,lg a•lg b=
1
2 .
∴lg (ab)•(log ab+log ba)=(lga+lgb)•(
lgb
lga +
lga
lgb )=(lg a+lgb)•
(lgb)2+(lga)2
lga•lgb
=(lg a+lg b)•
(lga+lgb)2-2lga•lgb
lga•lgb =12,
即lg(ab)•(log ab+log ba)=12.