(1)∵∠B=20°,∠C=60°,
∴∠BAC=180°-20°-60°=100°,
∵AE是角平分线,
∴∠EAC=50°,
∵AD是高,
∴∠ADC=90°,
∴∠DAC=30°,
∴∠EAD=∠EAC-∠DAC=50°-30°=20°;
(2))∵∠B=a°,∠C=b°,
∴∠BAC=180°-a°-b°,
∵AE是角平分线,
∴∠EAC=(90-1/2a-1/2b)°,
∵AD是高,
∴∠ADC=90°,
∴∠DAC=90°-b°,
∴∠EAD=∠EAC-∠DAC=[(90-1/2a-1/2b)°-(90°-b°)]=1/2(b-a)°;
(3)∵△ABC为等腰三角形,∠B=∠C,
∴AD与AE互相重合.