如图所示,一根张紧的水平弹性长绳上的a,b两点,相距14.0m,b点在a点的右方,当一列简谐横波沿此长绳向右传播时,若a

1个回答

  • 解题思路:根据题意,当简谐横波沿长绳向右传播时,若a点的位移达到正最大时,b点的位移恰为零且向下运动,结合波形,得到a,b两点与波长关系的通项式.又据题意,经过1.00s后a点的位移为零,且向下运动,而b点的位移恰达到负最大,得到时间与周期的关系通项式,求出波速的通项式,再研究波速的特殊值

    由题,当简谐横波沿长绳向右传播时,若a点的位移达到正最大时,b点的位移恰为零且向下运动,则

    ab间距离xab=(n+[3/4])λ,n=0,1,2,…,得到波长λ=

    4xab

    4n+3=[56/4n+3m.

    又据题意,经过1.00s后a点的位移为零,且向下运动,而b点的位移恰达到负最大,则

    时间t=1.00s=(k+

    1

    4])T,得到周期T=[4/4n+1]s,k=0,1,2…,则波速v=[λ/T]=

    14(4k+1)

    4n+3

    当k=0,n=0时,v=4.67m/s;

    当k=1,n=1时,v=10m/s;

    由于n、k是整数,v不可能等于6m/s和4m/s.

    故选AC.

    点评:

    本题考点: 波长、频率和波速的关系;横波的图象.

    考点点评: 从本题看出,求解波的多解题,首先判断波的传播方向,其次,根据波形及传播方向,列出波沿不同方向传播时可能传播距离和周期的通式,再次,看质点间隐含的不同波长的关系,列出波长的通式,再分别将n=0,1,2…代入通式可求得所有可能的答案,要防止漏解或用特解代通解.