∵AB=AC
∴∠B=∠C
∵AD=BD
∴∠BAD=∠B
∴∠BAD=∠C
∵AC=DC
∴∠CAD=∠CDA=(180-∠C)/2
∴∠BAC=∠BAD+∠CAD=∠C+(180-∠C)/2=90+∠C/2
∵∠B+∠C+∠BAC=180
∴∠C+∠C+90+∠C/2=180
∴∠C=36°
∴∠B=36°
∠BAC=90+∠C/2=90+18=108°
∵AB=AC
∴∠B=∠C
∵AD=BD
∴∠BAD=∠B
∴∠BAD=∠C
∵AC=DC
∴∠CAD=∠CDA=(180-∠C)/2
∴∠BAC=∠BAD+∠CAD=∠C+(180-∠C)/2=90+∠C/2
∵∠B+∠C+∠BAC=180
∴∠C+∠C+90+∠C/2=180
∴∠C=36°
∴∠B=36°
∠BAC=90+∠C/2=90+18=108°