求y=ax的平方-2ax+3(a不等于0) 在x大于等于a 小于等于2a+3 内的最值

1个回答

  • y=ax^2-2ax+3

    =a(x-1)^2-a+3,

    a≤x≤2a+3

    a-1≤x-1≤2a+2

    1.

    2a+2<0时,即a<-1

    a-1≤x-1≤2a+2

    4(a+1)^2≤(x-1)^2≤(a-1)^2

    a(a-1)^2≤a(x-1)^2≤4a(a+1)^2

    a(a-1)^2-a+3≤a(x-1)^2-a+3≤4a(a+1)^2-a+3

    a(a-1)^2-a+3≤y≤4a(a+1)^2-a+3;

    2.

    a-1>0时,即a>1

    a-1≤x-1≤2a+2

    (a-1)^2≤(x-1)^2≤4(a+1)^2

    4a(a+1)^2≤a(x-1)^2≤a(a-1)^2

    4a(a+1)^2-a+3≤a(x-1)^2-a+3≤a(a-1)^2-a+3

    4a(a+1)^2-a+3≤y≤a(a-1)^2-a+3;

    3.

    a-1<0,2a+2>0时,即-1<a<0或0<a<1

    (1)-1<a<0且2a+2>-(a-1),即-1/3<a<0

    a-1≤x-1≤2a+2

    0≤(x-1)^2≤4(a+1)^2

    4a(a+1)^2≤a(x-1)^2≤0

    4a(a+1)^2-a+3≤a(x-1)^2-a+3≤-a+3

    4a(a+1)^2-a+3≤y≤-a+3;

    (2)-1<a<0且2a+2<-(a-1),即-1<a<-1/3

    a-1≤x-1≤2a+2

    0≤(x-1)^2≤(a-1)^2

    a(a-1)^2≤a(x-1)^2≤0

    a(a-1)^2-a+3≤a(x-1)^2-a+3≤-a+3

    a(a-1)^2-a+3≤y≤-a+3;

    (3)0<a<1且2a+2>-(a-1),即0<a<1

    a-1≤x-1≤2a+2

    0≤(x-1)^2≤(a-1)^2

    0≤a(x-1)^2≤a(a-1)^2

    -a+3≤a(x-1)^2-a+3≤a(a-1)^2-a+3

    -a+3≤y≤a(a-1)^2-a+3;

    (4)0<a<1且2a+2<-(a-1),无解.

    综上所述

    a<-1时,a(a-1)^2-a+3≤y≤4a(a+1)^2-a+3;

    -1<a<-1/3时,a(a-1)^2-a+3≤y≤-a+3;

    -1/3<a<0时,4a(a+1)^2-a+3≤y≤-a+3;

    0<a<1时,-a+3≤y≤a(a-1)^2-a+3;

    a>1时,4a(a+1)^2-a+3≤y≤a(a-1)^2-a+3.