1.如图,用反证法,假如a与β有公共点B, 任意取A∈α, ∵a∥α,∴A不在a,A,a可确定平面γ.
γ与α有公共点A.从而有交线b.同理B∈β∩γ=c.
∵α∥β .∴b∥c,而a∥α.a∥b﹙同在γ.无公共点.﹚ 又B∈a∩c.
∴a,c重合,﹙过B 只有一条直线与b平行,即第五公设.﹚a∈β,与“a不在β内”矛盾.
∴a与β没有公共点,a∥β.
2.若α‖β,β‖γ,求证:α‖γ打漏条件,α,γ不重合.可以用反证法证明.
假如A∈α∩γ, 任意取B∈β,过B 在β上作相交直线a,b
A,a确定平面δ,a'=δ∩α,a"=δ∩γ,a'∥a,a"∥a.A∈a'∩a",∴a'.a"重合,﹙第五公设﹚
A,b确定平面ε,b’=ε∩α,b"=ε∩γ,b'∥b,b"∥b.A∈b'∩b",∴b'.b"重合,﹙第五公设﹚
α,γ有公共的相交直线,α,γ重合,与“α,γ不重合”矛盾,
∴α,γ没有公共点,即 α∥γ.[自己画图吧,以后几何题请一题一问.]