^2+c^2=a^2+√3bc
==>cosA=cos(b,c)=(b^2+c^2-a^2)/(2bc)=根号3/2
==>sinA=sin(b,c)=1/2
2sinBcosC-sin(B-C)=2sinBcosC-sinBcosC+cosBsinC
=sinBcosC+cosBsinC
=sin(B+C)
=sinA
=1/2
^2+c^2=a^2+√3bc
==>cosA=cos(b,c)=(b^2+c^2-a^2)/(2bc)=根号3/2
==>sinA=sin(b,c)=1/2
2sinBcosC-sin(B-C)=2sinBcosC-sinBcosC+cosBsinC
=sinBcosC+cosBsinC
=sin(B+C)
=sinA
=1/2