已知等差数列{an}和{bn}的前n项和分别为Sn和Tn,且(an/bn)=(2n/3n+1),则S9/T9=?
2个回答
公式:an/bn=S(2n-1)/T(2n-1)
S(2n-1)=2n
T(2n-1)=3n+1
2n-1=9
n=5
S9/T9=a5/b5=(2*5)/(3*5+1)=5/8
相关问题
等差数列an和bn的前n项和分别为Sn和Tn,且an/bn=2n/3n+1 S9/T9=
等差数列已知等差数列{an}的前n项和为Sn,等差数列{bn}的前n项和为Tn,且Sn/Tn=5n-9/n=3,则使an
1.已知两个等差数列An,Bn,前n项和分别为Sn,Tn,且Sn/Tn=(2n+2)/(n+2),则An/Bn=
等差数列{an}{bn}的前n项和分别为Sn、Tn,且an:bn=2n-1:3n-1,则S2n+1:T2n+1=?
设Sn ,Tn分别为等差数列{an}{bn}的前n项和,Sn/Tn=(5n-2)/(n+3),则an/bn=?
等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn
已知两个等差数列{an},{bn}的前n项和分别是Sn,Tn,若 Sn/Tn =(2n)/(3n+1),则 an/bn=
已知等差数列An的前n项和为Sn,等差数列Bn的前n项和为Tn.且Sn/Tn=2n+3/5n+3...求A9/B9的值
若数列AN,BN,均为等差数列,且前N项和分别是SN,TN,为什么AN/BN=S2N-1/T2N-1
等比数列an s3=6 s6=9 求s12 等差数列an前n项和为sn 等比数列bn前n项和为tn sn/tn=n/2n