解题思路:(1)由三角形的中位线的性质和直角三角形的性质就可以得出△DFM≌△EGM而得出结论;
(2)连接FM,GM,由三角形的中位线的性质和直角三角形的性质就可以得出△DFM≌△MGE而得出结论;
(3)取AB和AC的中点F、G,连接DF、MF,GE、GM,由直角三角形的性质和三角形的中位线的性质据可以得出∠DFM=∠MGE,就可以得出△DFM≌△MGE,从而得出结论.
(1)∵△ADBADB和和△AEC是等腰直角三角形,BFDF⊥AB,EG⊥ACAC,
∴∠DFB=∠EGC=90°,AF=BF,AG=CG,DF=[1/2]AB,EG=[1/2]AC.
∵AB=AC,
∴DF=EG.
∵M是BC的中点,
∴FM、GM△ABC的中位线,
∴FM∥AC,FM=[1/2]AC,GM∥AB,GM=[1/2]AB.
∴∠BFM=∠BAC,∠CGM=∠BAC,
∴∠BFM=∠CGM.
∴∠BFM+∠DFB=∠CGM+∠EGC,
∴∠DFM=∠EGM.
∵AB=AC,
∴FM=GM.
在△DFM和△EGM中
DF=EG
∠DFM=∠EGM
FM=GM,
∴△DFM≌△EGM(SAS),
∴MD=ME;
(2)MD=ME成立.
连接FM,GM,
∵△ADBADB和和△AEC是等腰直角三角形,BFDF⊥AB,EG⊥ACAC,
∴∠DFA=∠EGA=90°,AF=BF,AG=CG,DF=[1/2]AB,EG=[1/2]AC.
∵M是BC的中点,
∴FM、GM△ABC的中位线,
∴FM∥AC,FM=[1/2]AC,GM∥AB,GM=[1/2]AB.
∴∠MFA+∠BAC=180°,∠MGA+∠BAC=180°,DF=MG,MF=EG
∴∠MFA=∠MGA,
∴∠MFA+∠DFA=∠MGA+∠EGA,
∴∠DFM=∠MGE.
在△DFM和△MGE中
DF=MG
∠DFM=∠MGE
MF=EG,
∴△DFM≌△MGE(SAS),
∴MD=ME;
(3)MD=ME成立
理由:取AB和AC的中点F、G,连接DF、MF,GE、GM,
∵△ADADB和△AECCAEC是直角三角形,且点F、G是AB和AC的中点,
∴DF=BF=AF=[1/2]AB,EG=CG=AG=[1/2]AC.
∴∠DBA=∠FDB,∠ECA=∠GCE.
∵∠AFD=∠DBA+∠FDB,∠AGE=∠ECA+∠GCE,
∴∠AFD=2∠DBA,∠AGE=2∠ECA.
∵∠DBA=∠ECA,
∴2∠DBA=2∠ECA,
∴∠AFD=∠AGE.
∵M是BC的中点,
∴FM、GM△ABC的中位线,
∴FM∥AC,FM=
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了等腰三角形的性质的运用,直角三角形的性质的运用,平行线的性质的运用,三角形的中位线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.