正方形ABCD,AD=12,E是CD边上的动点,AE的垂直平分线FP交AD.AE.BC.于点F.H.G,交AB的延长线于

1个回答

  • AE=√(144+m^2),AH=HE=0.5√(144+m^2)

    Rt△AHF∽Rt△ADE

    HF:DE=AH:AD

    FH=(m/24)*√(144+m^2)

    AF^2=(144+m^2)/4+m^2(144+m^2)/24^2

    =(144+m^2)(144+m^2)/24^2

    AF=(144+m^2)/24=6+m^2/24

    DF=6-m^2/24

    作GG1⊥AG于G,GF⊥AE

    ∴ ∠G1GF=∠DAE

    又,AD=GG1

    ∴ Rt△GG1F≌Rt△DAE

    ∴GF=AE

    HG=√(144+m^2)-(m/24)√(144+m^2)

    =√(144+m^2)(24-m)/24

    FH:HG=m/(24-m)

    (2)

    FH:HG=1/2

    2m=24-m

    m=6,

    FD=6-m^2/24=6-36/24=6-3/2=9/2

    BG=12-m-FD=12-6-9/2=3/2

    AF=12-FD=15/2

    ∵ Rt△PBG∽Rt△PAF

    BG:AF=PB:(AB+BP)

    1/5=PB/(12+PB)

    12+PB=5PB

    4PB=12

    PB=3