已知|a+4|与b^2-2b+1互为相反数
则Ia+4I+Ib²-2b+1I=0
满足上式的条件是
a+4=0
b²-2b+1=0
解得a=-4 b=1
所以4x^2+axy-3y^2+4x-10y-3b
=4x²-4xy-3y²+4x-10y-3
=(2x+y)(2x-3y)+(4x-10y)-3 2x+y 3
=(2x+y+3)(2x-3y-1) 2x-3y -1
3(2x-3y)-(2x+y)=4x-10y
已知|a+4|与b^2-2b+1互为相反数
则Ia+4I+Ib²-2b+1I=0
满足上式的条件是
a+4=0
b²-2b+1=0
解得a=-4 b=1
所以4x^2+axy-3y^2+4x-10y-3b
=4x²-4xy-3y²+4x-10y-3
=(2x+y)(2x-3y)+(4x-10y)-3 2x+y 3
=(2x+y+3)(2x-3y-1) 2x-3y -1
3(2x-3y)-(2x+y)=4x-10y