(1) △=(m+1)^2-m^2-4>=0
2m-3>=0
m>=3/2
(2)根据韦达定理:
x1+x2=m+1
x1x2=1/4m^2+1
x1^2+x2^2=5
(x1+x2)^2-2x1x2=5
(m+1)^2-1/2m^2-2=5
m^2+4m-12=0
m1=-6(舍去)
m2=2
所以m=2
(1) △=(m+1)^2-m^2-4>=0
2m-3>=0
m>=3/2
(2)根据韦达定理:
x1+x2=m+1
x1x2=1/4m^2+1
x1^2+x2^2=5
(x1+x2)^2-2x1x2=5
(m+1)^2-1/2m^2-2=5
m^2+4m-12=0
m1=-6(舍去)
m2=2
所以m=2