解题思路:(1)由矩形的性质:OB=OD,AE∥CF证得△BOE≌△DOF;
(2)若四边形EBFD是菱形,则对角线互相垂直,因而可添加条件:EF⊥AC,
当EF⊥AC时,∠EOA=∠FOC=90°,
∵AE∥FC,
∴∠EAO=∠FCO,矩形对角线的交点为O,
∴OA=OC,
∴△AOE≌△COF,
∴OE=OF,根据对角线互相垂直平分的四边形是菱形.
∴四边形EBFD是菱形.
(1)证明:∵四边形ABCD是矩形,
∴OB=OD(矩形的对角线互相平分),
AE∥CF(矩形的对边平行).
∴∠E=∠F,∠OBE=∠ODF.
∴△BOE≌△DOF(AAS).
(2)当EF⊥AC时,四边形AECF是菱形.
证明:∵四边形ABCD是矩形,
∴OA=OC(矩形的对角线互相平分).
又∵由(1)△BOE≌△DOF得,OE=OF,
∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形)
又∵EF⊥AC,
∴四边形AECF是菱形(对角线互相垂直的平行四边形是菱形).
点评:
本题考点: 菱形的判定;全等三角形的判定;矩形的性质.
考点点评: 本题利用了:1、矩形的性质,2、全等三角形的判定和性质,3、菱形的判定.