解题思路:当小球到达最高点的速率为v时,两段线中张力恰好均为零,由小球的重力提供向心力,根据牛顿第二定律得出v与半径的关系.若小球到达最高点速率为2v,由重力、两绳拉力的合力提供向心力,由牛顿第二定律得出绳子的拉力与速度、半径的关系,联立求出两绳拉力的合力,再由力的合成法求出每段线中张力.
当速率为v时,则有mg=m
v2
r ①
当速率为2v时,则有mg+F=m
(2v)2
r ②
联立①②得,F=3mg
设每根线上的张力为T,满足:
2Tcos30°=F
即得T=
3mg
答:此时每段线中张力为
3mg.
点评:
本题考点: 牛顿第二定律;向心力.
考点点评: 本题是竖直平面内圆周运动问题,关键是分析物体受力,确定向心力的来源.基本题,比较容易.