1.x=0是函数f(x)=ln|1-x|/|x|(x+3)的 间断点

1个回答

  • 1.∵左极限=lim(x->0-)[ln(1-x)/(-x(x+3))]

    =lim(x->0-)[1/(x+3)]*lim(x->0-)[ln(1-x)/(-x)]

    =(1/3)lim(x->0-)[ln(1-x)/(-x)]

    =(1/3)lim(x->0-)[(-1/(1-x))/(-1)] (0/0型极限,应用洛必达法则)

    =1/3;

    右极限=lim(x->0+)[ln(1-x)/(x(x+3))]

    =lim(x->0+)[1/(x+3)]*lim(x->0+)[ln(1-x)/x]

    =(1/3)lim(x->0+)[ln(1-x)/x]

    =(1/3)lim(x->0+)[-1/(1-x)] (0/0型极限,应用洛必达法则)

    =-1/3.

    ∴根据间断点分类定义知,x=0是函数f(x)=ln|1-x|/|x|(x+3)的第一类间断点.

    2.∵f(x)=2x²lnx

    ∴它的定义域是(0,+∞)

    ∵令f'(x)=2(2xlnx+x)=0,得x=e^(-1/2)

    当00.即此函数严格单调递增.

    ∴f(x)=2x²lnx的单调增区间为(e^(-1/2),+∞).

    3.∵f(x)有连续的二阶导数,且f'(b)=a,f'(a)=b

    ∴所求积分存在

    故∫f'(x)f''(x)dx=∫f'(x)d(f'(x))

    =[(f'(x))²/2]│

    =[(f'(b))²-(f'(a))²]/2

    =(a²-b²)/2.