(2011•济南一模)“快乐向前冲”节目中有这样一种项目,选手需要借助悬挂在高处的绳飞跃到鸿沟对面的平台上,如果已知选手

1个回答

  • 解题思路:选手向下摆动过程中,机械能守恒,在最低点时绳子拉力和重力的合力提供向心力,选手在最低点松手后,做平抛运动,明确了整个过程的运动特点,依据所遵循的规律即可正确求解.

    A、失重时物体有向下的加速度,超重时物体有向上的加速度,选手摆到最低点时向心加速度竖直向上,因此处于超重状态,故A错误;

    B、摆动过程中机械能守恒,有:mgl(1−cosθ)=

    1

    2mv2 ①

    设绳子拉力为T,在最低点有:T−mg= m

    v2

    l ②

    联立①②解得:T=(3-2cosα)mg,故B正确;

    C、绳子对选手的拉力和选手对绳子的拉力属于作用力和反作用力,因此大小相等,方向相反,故C错误;

    D、选手摆到最低点的运动过程中,沿绳子方向有向心加速度,沿垂直绳子方向做加速度逐渐减小的加速运动,其运动不能分解为水平方向的匀加速运动和竖直方向上的匀加速运动,故D错误.

    故选B.

    点评:

    本题考点: 牛顿第二定律;超重和失重;向心力.

    考点点评: 本题属于圆周运动与平抛运动的结合,对于这类问题注意列功能关系方程和向心力公式方程联合求解.

相关问题