(1)∵a 1=2,
1
2 a n+1 -
1
2 a n =2 (co s 2
π
6 -si n 2
π
6 ) =2cos
1
3 π =1
∴a n+1-a n=2
∴数列{a n}是以2为首项,以2为公差的等差 数列
∴a n=2+2(n-1)=2n
(2)∵ b n = a n • 3 n +n =2n•3 n+n
∴T n=2(1•3+2•3 2+…+n•3 n)+(1+2+…+n)
∴3T n=2( 1•3 2+2•3 3+…+n•3 n+1)+3(1+2+…+n)
两式相减可得,-2T n=2(3+3 2+3 3+…+3 n-n•3 n+1) -2•
n(1+n)
2
= 2•
3(1- 3 n )
1-3 -n(n+1)
=3 n+1-3-n(n+1)
∴T n=
n(n+1)+3- 3 n+1
2