本题用旋转法可以巧解.
将△PBC绕B点逆时针旋转90°至BC与AB重合,得到一个新的△AQB,可知:BQ=PB=√2,QA=PC=√5,∠ABQ=∠PBC,
由于∠PBC+∠ABP=90°,所以∠PBQ=∠ABQ+∠ABP=∠PBC+∠ABP=90°,则△PBQ是一个等腰直角三角形,
故:∠BPQ=45°,
由勾股定理,得:PQ²=PB²+BQ²=(√2)²+(√2)²=4,
另外,在△APQ中,PA²+PQ²=1²+4=5=QA²,由勾股定理知:△APQ是一个以∠APQ为直角的直角三角形,即∠APQ=90°.
综上得:∠APB=∠APQ+∠BPQ=90°+45°=135°.
备注:在电脑里,‘√’表示二次根号的意思.