(0.1^2+0.2^2+0.3^2+0.4^2)^2÷(0.1^3+0.2^3+0.3^3+0.4^3)
=[(1/10)^2+(2/10)^2+(3/10)^2+(4/10)^2]^2÷[(1/10)^3+(2/10)^3+(3/10)^3+(4/10)^3]
=[(1+4+9+16)/100]^2÷[(1+8+27+64)/1000]
=(30/100)^2÷(100/1000)
=(3/10)^2÷(1/10)
=9/100÷1/10
=9/10
如果是这样的,则有:
(0.1^2+0.2^2+0.3^2+0.4^2)^2÷(0.1^3+0.2^3+0.3^3+0.4^3)^3
=[(1/10)^2+(2/10)^2+(3/10)^2+(4/10)^2]^2÷[(1/10)^3+(2/10)^3+(3/10)^3+(4/10)^3]^3
=[(1+4+9+16)/100]^2÷[(1+8+27+64)/1000]^3
=(30/100)^2÷(100/1000)^3
=(3/10)^2÷(1/10)^3
=9/100÷1/1000
=90