lim((x^2)/(x^2)+1)^x x趋近于无穷大
1个回答
取倒数,得
原式=1/[lim[(x^2)+1)/x^2]^x x趋近无穷大]
=1/[lim[(1+1/x^2]^x x趋近无穷大]
=1/e^lim (x->∞)x/x^2
=1/e^0
=1
相关问题
lim[x-x^2ln(1+1/x)] (X趋近于无穷大)
lim x趋近于无穷大 (1-x)∧x=?
lim趋近于正无穷大 根号x2+x - 根号x2-x
求lim arctanx/x x趋近于无穷大
lim (x趋近于无穷大)[∫(0,x)t^2*e^(t^2-x^2)dt]/x
x趋近无穷大 lim(1-3/x)^x=
lim(x趋近无穷大)x(x/2-arctanx) 求极限?
lim趋近于无穷大(x+1分子x-1)的x次方
根据lim(sinx/x)=1求lim(tan2x/x)=?x趋近于0 x趋近于0
极限limx趋近于无穷大(1+1/2x)^x=