[(a^2b^2c^2)/(a^3+b^3+c^3)]*[1/a^3+1/b^3+1/c^3]
=(a^2b^2c^2)(1/a^3+1/b^3+1/c^3)/(a^3+b^3+c^3)
=[(b^2c^2/a)+(a^2c^2/b)+(a^2b^2/c)]/(a^3+b^3+c^3)
已知b^2=ac,(ac)^2=b^4,带入上式
=[ac*c^2/a+b^4/b+a^2*ac/c]/(a^3+b^3+c^3)
=(c^3+b^3+a^3)/(a^3+b^3+c^3)
=1
[(a^2b^2c^2)/(a^3+b^3+c^3)]*[1/a^3+1/b^3+1/c^3]
=(a^2b^2c^2)(1/a^3+1/b^3+1/c^3)/(a^3+b^3+c^3)
=[(b^2c^2/a)+(a^2c^2/b)+(a^2b^2/c)]/(a^3+b^3+c^3)
已知b^2=ac,(ac)^2=b^4,带入上式
=[ac*c^2/a+b^4/b+a^2*ac/c]/(a^3+b^3+c^3)
=(c^3+b^3+a^3)/(a^3+b^3+c^3)
=1