f'(x)g(x)+f(x)g'(x)
设f(x)、g(x)是R上的可导函数,f'(x)、g'(x)分别为f(x),g(x)的导函数,且f'(x)g(x)+f(
1个回答
相关问题
-
设f(x)、g(x)是R上的可导函数,f′(x),g′(x)分别为f(x)、g(x)的导函数,且满足f′(x)g(x)+
-
已知函数f(x),g(x)是定义在R上可导函数,满足f′(x)•g(x)-f(x)•g′(x)<0,且f(x)>0,g(
-
已知函数f(x),g(x)是定义在R上可导函数,满足f′(x)•g(x)-f(x)•g′(x)<0,且f(x)>0,g(
-
设函数f(x)、g(x)分别是定义在R上的奇函数和偶函数,f′(x),g′(x)分别是f(x),g(x)的导函数,当x<
-
对于可导函数f(x),g(x) ,"f'(x)=g'(x)"是f(x)=g(x)的 条件
-
设函数f(x)和g(x)均可导,且f'(x)
-
设f(x)、g(x)是定义在R上的可导函数,且f′(x)g(x)+f(x)g′(x)<0,则当a<x<b时有( )
-
设f、g是R上的可导函数,f′、g′分别为f、g的导函数,且f′g+fg′<0,则当a函数求导法则证明:{f(x)+g(x)}'=f'(x)+g'(x){f(x)/g(x)}=[f'(x)*g(x)-f(x2.设f( x )、g( x )是定义域为R的 恒大于零的可导函数,f'(x)g(x)-g'(x)f(x)<0.即有: