设正方形边长为2x∵E为AB中点∴AE=EB=x∵∠A=∠B=90°∵AG=1,BF=2∴GE^2=AE^2+AG^2GE^2=x^2+1EF^2=BE^2+BF^2EF^2=X^2+4∵∠GEF=90°∴GF^2=GE^2+EF^2GF^2=2X^2+5作HF⊥AD,垂足为H∵∠AHF=90°∵∠A=∠B=90°∴ABFH为矩形∴BF=AG+GHGH=1HF=2x∵GH^2+HF^2=GF^2GF^2=1+4x^21+4x^2=2X^2+5x=√2则GF^2=1+4x^2=9GF=3加分啊
设正方形边长为2x∵E为AB中点∴AE=EB=x∵∠A=∠B=90°∵AG=1,BF=2∴GE^2=AE^2+AG^2GE^2=x^2+1EF^2=BE^2+BF^2EF^2=X^2+4∵∠GEF=90°∴GF^2=GE^2+EF^2GF^2=2X^2+5作HF⊥AD,垂足为H∵∠AHF=90°∵∠A=∠B=90°∴ABFH为矩形∴BF=AG+GHGH=1HF=2x∵GH^2+HF^2=GF^2GF^2=1+4x^21+4x^2=2X^2+5x=√2则GF^2=1+4x^2=9GF=3加分啊